Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

The Effect of Fuel Composition on Performance and Emissions of a Variety of Natural Gas Engines

2010-05-05
2010-01-1476
Work was performed to determine the feasibility of operating heavy-duty natural gas engines over a wide range of fuel compositions by evaluating engine performance and emission levels. Heavy-duty compressed natural gas engines from various engine manufacturers, spanning a range of model years and technologies, were evaluated using a diversity of fuel blends. Performance and regulated emission levels from these engines were evaluated using natural gas fuel blends with varying methane number (MN) and Wobbe Index in a dynamometer test cell. Eight natural gas blends were tested with each engine, and ranged from MN 75 to MN 100. Test engines included a 2007 model year Cummins ISL G, a 2006 model year Cummins C Gas Plus, a 2005 model year John Deere 6081H, a 1998 model year Cummins C Gas, and a 1999 model year Detroit Diesel Series 50G TK. All engines used lean-burn technology, except for the ISL G, which was a stoichiometric engine.
Journal Article

The Effect of EGR on Low-Speed Pre-Ignition in Boosted SI Engines

2011-04-12
2011-01-0339
The spark ignition (SI) engine has been known to exhibit several different abnormal combustion phenomena, such as knock or pre-ignition, which have been addressed with improved engine design or control schemes. However, in highly boosted SI engines - where the engine displacement is reduced and turbocharging is employed to increase specific power - a new combustion phenomenon, described as Low-Speed Pre-Ignition (LSPI), has been exhibited. LSPI is characterized as a pre-ignition event typically followed by heavy knock, which has the potential to cause degradation of the engine. However, because LSPI events occur only sporadically and in an uncontrolled fashion, it is difficult to identify the causes for this phenomenon and to develop solutions to suppress it. Some countermeasures exist that OEMs can use to avoid LSPI, such as load limiting, but these have drawbacks.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part II Unregulated Emissions and Chemical Characterization

2000-06-19
2000-01-1968
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. As part of Tier 1 compliance requirements for EPA's Fuel Registration Program, a detailed chemical characterization of the transient exhaust emissions from three modern diesel engines was performed, both with and without an oxidation catalyst. This characterization included several forms of hydrocarbon speciation, as well as measurement of aldehydes, ketones, and alcohols. In addition, both particle-phase and semivolatile-phase PAH and nitro-PAH compounds were measured. Unregulated emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance

2000-06-19
2000-01-1967
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. Transient exhaust emissions from three modern diesel engines were measured during this study, both with and without an oxidation catalyst. Emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel. Regulated emissions and performance data are presented in this paper, while the results of a detailed chemical characterization of exhaust emissions are presented in a companion paper. The use of biodiesel resulted in lower emissions of unburned hydrocarbons, carbon monoxide, and particulate matter, with some increase in emissions of oxides of nitrogen on some engines.
Technical Paper

The Development of the Pumpless Gas Engine Concept

1970-02-01
700073
The major events in the development of a “pumpless” gas engine concept are related. The immediate objective of the subject program was to develop a combustion system for natural gas fueled engines which, when compared with conventional gas engines, would be operationally simpler and easier to maintain with no appreciable penalty in specific fuel consumption. The pumpless gas principle was successfully demonstrated on a single-cylinder, 2-cycle engine. The concept was then extended, with the aid of combustion photography, to a single-cylinder, 4-cycle laboratory engine. The feasibility of the concept was further demonstrated by the conversion of a commercially available 4-cycle, 4-cyl diesel engine.
Journal Article

The Combustion and Ignition Characteristics of Varying Blend Ratios of JP-8 and a Coal to Liquid Fischer-Tropsch Jet Fuel in a Military Relevant Single Cylinder Diesel Engine

2015-06-01
2015-01-9073
The U.S. Army currently uses JP-8 for global operations according to the ‘one fuel forward policy’ in order to reduce the logistics burden of supplying a variety of fuels for given Department of Defense ground vehicle applications. One particular challenge with using global JP-8 is the lack of or too broad a range of specified combustion affecting properties including ignition quality, high temperature viscosity, and density. In particular, the ignition quality of JP-8 has dramatically varied throughout the past decade on a global basis covering a range of 29 to 70 cetane index. This key combustion affecting parameter was explored in this study by evaluating a synthesized low ignition quality jet fuel blended in 25% volumetric proportions with JP-8 to effectively cover a cetane number range of 25 to 45 in a single cylinder diesel engine operated at various light, medium, and high load operating conditions.
Technical Paper

The Challenges of Developing an Energy, Emissions, and Fuel Economy Test Procedure for Heavy-Duty Hybrid Electric Transit Vehicles

1995-11-01
952610
Over twenty prototype hybrid buses and other commercial vehicles are currently being completed and deployed. These vehicles are primarily “series” hybrid vehicles which use electric motors for primary traction while internal combustion engines, or high-speed turbine engines connected to generators, supply some portion of the electric propulsion and battery recharge energy. Hybrid-electric vehicles have an electric energy storage system on board that influences the operation of the heat engine. The storage system design and level affect the vehicle emissions, electricity consumption, and fuel economy. Existing heavy-duty emissions test procedures require that the engine be tested over a transient cycle before it can be used in vehicles (over 26,000 lbs GVW). This paper describes current test procedures for assessing engine and vehicle emissions, and proposes techniques for evaluating engines used with hybrid-electric vehicle propulsion systems.
Technical Paper

The CRC Port Fuel Injector Bench Test Method, Interlaboratory Study, and Vehicle Test Correlation

1999-05-03
1999-01-1548
Port-fuel-injection (PFI) problems were first reported late in 1984. Deposits that formed on the tip of the pintle-type injectors of certain engines restricted fuel flow and caused driveability and emission problems. Responding to this problem, industry test programs were initiated to reproduce the deposits under controlled conditions. In 1986, a vehicle test procedure was identified and the automotive industry recommended a pass/fail performance level. Building upon available information, the Coordinating Research Council's (CRC) Port Fuel Injector Deposit Group developed a standard vehicle test procedure to evaluate various unleaded gasolines for port-fuel-injection fouling. The vehicle test procedure was adopted as an ASTM test method. The United States Environmental Protection Agency (EPA) and the State of California accepted the procedure as the standard for measuring a gasoline's propensity to form deposits in a pintle-type injector.
Technical Paper

The 1989 Formula SAE Student Design Competition

1990-02-01
900840
Forty-five cars were entered from 37 universities across the U.S. and Canada in the ninth annual Formula SAE Student Design Competition held on May 25, 26 and 27 at the University of Texas at San Antonio (UTSA). Thirty-six cars from 31 schools actually competed, but only 22 cars finished. The event included many firsts in Formula SAE. The SAE South Texas Section set a precedent by co-hosting the competition with the UTSA. The GM Sunraycer display and demonstration exhibited high technology and corporate support of Formula SAE. Total award funds (from various sponsors) exceeded those of previous events. New awards were given by new sponsors in 1989.
Technical Paper

Test Methodology to Quantify and Analyze Energy Consumption of Connected and Automated Vehicles

2019-04-02
2019-01-0116
A new generation of vehicle dynamics and powertrain control technologies are being developed to leverage information streams enabled via vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) connectivity [1, 2, 3, 4, 5]. While algorithms that use these connected information streams to enable improvements in energy efficiency are being studied in detail, methodologies to quantify and analyze these improvements on a vehicle have not yet been explored fully. A procedure to test and accurately measure energy-consumption benefits of a connected and automated vehicle (CAV) is presented. The first part of the test methodology enables testing in a controlled environment. A traffic simulator is built to model traffic flow in Fort Worth, Texas with sufficient accuracy. The benefits of a traffic simulator are two-fold: (1) generation of repeatable traffic scenarios and (2) evaluation of the robustness of control algorithms by introducing disturbances.
Technical Paper

Technology Demonstration of U.S. Army Ground Materiel Operating on Aviation Kerosene Fuel

1992-02-01
920193
A technology demonstration program was conducted by the U.S. Army to verify the feasibility of using aviation turbine fuel JP-8 in all military diesel fuel-consuming ground vehicles and equipment (V/E). Over 2,800 pieces of military equipment participated in a two and one-half year program accumulating over 2,621,000 total miles (4,219,810 km) using JP-8 in combat/tracked, tactical/wheeled, and transportation motor pool vehicles. Over 71,000 hours of operation were accumulated in diesel/turbine engine-driven generator sets using JP-8 fuel. Comparisons of various performance areas with baseline diesel fuel (DF-2) operation were made.
Technical Paper

Technical Approach to Increasing Fuel Economy Test Precision with Light Duty Vehicles on a Chassis Dynamometer

2016-04-05
2016-01-0907
In 2012, NHTSA and EPA extended Corporate Average Fuel Economy (CAFE) standards for light duty vehicles through the 2025 model year. The new standards require passenger cars to achieve an average of five percent annual improvement in fuel economy and light trucks to achieve three percent annual improvement. This regulatory requirement to improve fuel economy is driving research and development into fuel-saving technologies. A large portion of the current research is focused on incremental improvements in fuel economy through technologies such as new lubricant formulations. While these technologies typically yield less than two percent improvement, the gains are extremely significant and will play an increasing role in the overall effort to improve fuel economy. The ability to measure small, but statistically significant, changes in vehicle fuel economy is vital to the development of new technologies.
Technical Paper

Synthetic Fuel Operation in a Heavy Duty Diesel Engine

1986-10-01
861538
A heavy duty (150 kW) diesel engine was tested to determine operational problems while running on minimally processed synthetic fuels. A reference No. 2 diesel fuel was compared with liquid products derived from shale, tar sands, and coal. Information on the engine setup and test procedure is presented. The test results include engine power, thermal efficiency, ignition delay, gaseous and particulate emissions, smoke opacity, cylinder pressure, and heat release data. Cold start data at 0°C and −20° C and idle deposit test results are also presented. These data should help to determine future engine modifications to enhance synfuel engine performance.
Journal Article

Synergies between High EGR Operation and GDI Systems

2008-04-14
2008-01-0134
A gasoline direct injection engine was operated at elevated EGR levels over a significant portion of the performance map. The engine was modified to use both cooled and un-cooled EGR in high pressure loop and low pressure loop configurations. The addition of EGR at low and part load was shown to decrease NO and CO emissions and to reduce fuel consumption by up to 4%, primarily through the reduction in pumping losses. At high loads, the addition of EGR resulted in higher fuel consumption benefits of 10-20% as well as the expected NO and CO reductions. The fuel economy benefit at high loads resulted from a decrease in knock tendency and a subsequent improvement in combustion phasing as well as reductions in exhaust temperatures that eliminated the requirement for over-fuelling.
Technical Paper

Survey of Low Sulfur Diesel Fuels and Aviation Kerosenes from U.S. Military Installations

1995-10-01
952369
In support of the Department of Defense goal to streamline procurements, the Army recently decided to discontinue use of VV-F-800D as the purchase specification for diesel fuel being supplied to continental United States military installations. The Army will instead issue a commercial item description for direct fuel deliveries under the Post-Camp-Station (PCS) contract bulletin program. In parallel, the Defense Fuel Supply Center and the U.S. Army Mobility Technology Center-Belvoir (at Ft. Belvoir, VA) initiated a fuel survey with the primary objective to assess the general quality and lubricity characteristics of low sulfur diesel fuels being supplied to military installations under the PCS system. Under this project, diesel fuel delivery samples were obtained from selected military installations and analyzed according to a predetermined protocol.
Technical Paper

Spectrometric Analysis of Used Oils

1969-02-01
690776
This paper discusses the techniques and diagnostic significance of atomic absorption, atomic emission, and infrared spectrometric analysis of crankcase lubricants, with the use of supplementary data where pertinent. The parameters affecting used oil analytical data are discussed in terms of examples from Army general purpose vehicle test engines. Wear metals in used gear oils are also discussed and examples are given. Analytical methods and their applications are fully described, and the equipment and procedures for infrared spectroscopy and gas chromatography techniques are outlined.
Technical Paper

Solid Particle Number and Ash Emissions from Heavy-Duty Natural Gas and Diesel w/SCRF Engines

2018-04-03
2018-01-0362
Solid and metallic ash particle number (PN) and particulate matter (PM) mass emission measurements were performed on a heavy-duty (HD) on-highway diesel engine and a compressed natural gas (CNG) engine. Measurements were conducted under transient engine operation that included the FTP, WHTC and RMC. Both engines were calibrated to meet CARB ultra low NOX emission target of 0.02 g/hp-hr, a 90% reduction from current emissions limit. The HD diesel engine final exhaust configuration included a number of aftertreatement sub-systems in addition to a selective catalytic reduction filter (SCRF). The stoichiometric CNG engine final configuration included a closed coupled Three Way Catalyst (ccTWC) and an under floor TWC (ufTWC). The aftertreatment systems for both engines were aged for a full useful life (FUL) of 435,000 miles, prior to emissions testing. PM mass emissions from both engines were comparable and well below the US EPA emissions standard.
Technical Paper

Solid Particle Emissions from a Diesel Fuel Based Burner Platform

2021-04-06
2021-01-0627
Diesel engines are the primary power source for the medium and heavy-duty truck applications in the US. There is a wide range of regulatory developments being considered in the US that would impact the field of diesel engines and aftertreatment systems, such as the California Air Resources Board’s (CARB) low NOX standards and the extended durability requirement for aftertreatment systems. The proposed durability standards would require manufacturers to develop aftertreatment systems targeting up to 800,000 miles of full useful life (FUL) for Heavy heavy-duty (HHD) Application. Robust design and validation of aftertreatment systems is critical to ensure compliance with such stringent regulations. Several methodologies are being considered by the regulatory agencies for the compliance validation process, including the option of accelerated aging of the aftertreatment systems for a portion of the FUL.
Technical Paper

Soak Time Effects on Car Emissions and Fuel Economy

1978-02-01
780083
Five light-duty vehicles were used to investigate HC, CO, and NOx emissions and fuel economy sensitivity to changes in the length of soak period preceding the EPA Urban Dynamometer Driving Schedule (UDDS). Emission tests were conducted following soak periods 10 minutes to 36 hours in length. Each of the first 8 minutes of the driving cycle was studied separately to observe vehicle warm-up. Several engine and fuel system temperatures were monitored during soak and run periods and example trends are illustrated. The extent to which emission rates and fuel consumption are affected by soak period length is discussed.
Journal Article

Simulation of Organic Rankine Cycle Electric Power Generation from Light-Duty Spark Ignition and Diesel Engine Exhaust Flows

2013-04-08
2013-01-1644
The performance of an organic Rankine cycle (ORC) used to recover waste heat from the exhaust of a diesel and a spark ignition engine for electric power generation was modeled. The design elements of the ORC incorporated into the thermodynamic model were based on an experimental study performed at Oak Ridge National Laboratory in which a regenerative organic Rankine cycle system was designed, assembled and integrated into the exhaust of a 1.9 liter 4-cylinder automotive turbo-diesel. This engine was operated at a single fixed-load point at which Rankine cycle state point temperatures as well as the electrical power output of an electric generator coupled to a turbine that expanded R245fa refrigerant were measured. These data were used for model calibration.
X